Compound Interest

Imagine that your Gramma gives you \$100 for your birthday in December. You decide to research different ways to start a savings plan that will help you make the most of your gift. You find a savings plan that pays 8% interest annually.

	Piggy Bank	Simple Interest (Compounded Annually)	Compounded Semi-Annually	Compounded Quarterly
Balance on 1/1				
Balance on 4/1				
Balance on 7/1				
Balance on 10/1				
Balance on 12/31				

Compound Interest Formula

Using the formula above, fill out the table below to show how much money would be in your account at the end of 20 years if your account pays 5% per year and is compounded as shown in the table.

Compounded	Compounded	Compounded	Compounded	Compounded Daily
Annually	Semi-Annually	Quarterly	Monthly	

Natural Base

Consider an investment of \$1 in an account that pays 100% annual interest. Write a formula for the amount in the account after 1 year for n compounding per year.

Find the value of the account for the number of compounding per year that are given in the table below.

Number of	Value in Account after 1 Year
Compoundings	
Per Year (n)	
1	
10	
100	
1000	
10,000	
100,000	
1,000,000	

Natural Base e				

Compounding Continuously Formula			

Compare the amount of money in two savings accounts after 25 years with the same initial investment of \$500 and interest rate of 6% if the first account is compounded monthly and the second is compounded continuously.

Compounded Monthly	Compounded Continuously		

Graphing $f x = e^x$

List 3 features of the graph that are the same as other exponential graphs (with different bases).

Compound Interest Worksheet

1. Find the amount of money in an account after 15 years if \$7000 is deposited at 6% annual interest compounded as follows.

Annually	Semi-Annually	Quarterly	Daily	Continuously

2. How much money will be in an account at the end of 34 years if \$17,000 is deposited at 12% annual interest compounded as follows?

Annually	Semi-Annually	Quarterly	Daily	Continuously

3. Fill in the table for each of the given functions. Then graph each function on the same axes.

